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Experiments on the pressure drop created 
by a sphere settling in a viscous liquid. Part 2. 

Reynolds numbers from 0.2 to 21,000 
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The pressure drop AP created by the motion of a ‘small’ spherical particle 
settling along the axis of a large-diameter circular cylinder filled with a quiescent 
liquid was measured in the particle Reynolds number range (based on diameter) 
from Re = 0.2 to 21,000. For Re < 125 it  was found that APA/D = 2-0 
( A  = cylinder cross-sectional area; D = particle drag), in agreement with 
existing theory in the Stokes and Oseen regimes. Beyond Re = 125 a fairly 
abrupt transition occurs, the APAID ratio decreasing asymptotically towards 
1.0, the limiting value predicted by elementary momentum principles for an 
‘unbounded’ fluid, with increasing Re. At Re z 6000 the transition is essentially 
complete. 

1. Introduction 
A previous paper (Pliskin & Brenner 1963; hereafter referred to as part 1)  

reported the results of experimental measurements of the pressure drop caused 
by the vertical settling motion of a single spherical particle of radius a along 
the axis of a long circular cylinder of radius R, (a/R,< 1) filled with viscous 
fluid, for particle Reynolds numbers Re up to about 1.6 (Re = 2uU/v;  
U = sphere terminal settling velocity, v = kinematic viscosity). This pressure 
drop refers to the limiting dynamic pressure difference between any two 
sufficiently distant horizontal planes on each side of the sphere, the pressure 
being greatest on that plane towards which the sphere advances. The motivation 
for the original experiments arose from the theoretical prediction (Brenner 
1962) that, in the Stokes and Oseen regimes, i.e. Re < 2, the pressure drop force, 
APA ( A  = nRt), would not simply be equal to the drag force D on the sphere 
in the ‘unbounded’ limit a/R, -+ 0 (as might otherwise be implied by elementary 
momentum arguments) but rather would be given by the relation 

APA/D = 2 ( 1 )  

for motion along the cylinder axis. 
Equation (1) was adequately confirmed in part 1 for the limited region 

investigated, 0.1 < Re < 1.6 (and 0.04 < a/R, < 0.25). It was further sug- 
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gested on theoretical grounds (Brenner 1962), and indicated by the general 
trend of the experimental data, that (1) might be valid even at Reynolds 
numbers substantially beyond Re = 2, at which point both the Stokes and the 
Oseen drag formulas cease being accurate. For, unlike the drag, which depends 
upon the detailed flow field in the immediate proximity of the particle, the 
pressure drop depends only upon the nature of the flow at relatively great 
distances from the particle, especially in the neighbourhood of the cylinder 
walls, where the no-slip boundary condition is crucial to the validity of (1) .  
And there, because the disturbance created by the sphere’s motion has been 
effectively attenuated over the relatively enormous distances involved, at  least 
in the limit where a/R,  --f 0,  the fluid is virtually at rest. It is entirely conceivable, 
therefore, that (1)) though derived by making the usual assumption of small 
inertial effects implicit in the Stokes and Oseen drag laws, may have a range of 
applicability greatly exceeding Re = 2. It is with the experimental confirmation 
of this hypothesis that the present paper is primarily concerned, as well as with 
establishing the asymptotic law governing the APAID vs. Re relationship as 
Re -+ m, if indeed one exists. 

Experiments are described herein covering the Reynolds number range from 
0.2 to 21,000. The greatly extended Re range investigated here, compared with 
that of part 1, was made possible by the use of a sensitive, electronically 
monitored, rapid-response, differential pressure transducer in place of the 
U-tube micromanometer employed in part 1. A more detailed description of the 
experimental programme than is described in the sequel is available elsewhere 
(Feldman 1967). 

2. Equipment and experiments 
Major pieces of apparatus and auxiliary equipment are depicted schematically 

in figure 1. The main components consisted of: (i) a vertical glass pipe, 10 ft. 
long and 6.03 in. inside diameter, in which the spheres were allowed to settle; 
(ii) a vertical brass pipe, 10 ft. long and 2 in. nominal diameter, connected at  its 
base to the glass column, and used to balance the hydrostatic pressure in the 
main column; (iii) a differential pressure transducer, with its two pressure ports 
joined by tubing to openings at  the tops of the glass and brass pipes, respectively ; 
(iv) a variable, high-speed, strip-chart recorder, used to record permanently the 
electrical signal issuing from the transducer amplifier. 

Except for the transducer controller and recorder, the entire apparatus was 
housed within a large, temperature-controlled, Masonite chamber with a Plexi- 
glass door. Temperature control within the enclosure housing the apparatus was 
achieved by re-circulating air from a constant environment chamber. Both 
columns were filled with the appropriate liquid being tested to within a few 
inches of their tops. The remainder of the system contained air at essentially 
atmospheric pressure, serving to transmit to the transducer the pressure 
difference created by the sphere’s motion through the liquid. The system 
consisting of the main column, balancing column, inter-connexion, and trans- 
ducer constituted an air-tight assembly, completely isolated from possible 
atmospheric fluctuations during the course of a single experiment. 
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Five different liquids were utilized to achieve the desired Reynolds number 
range. These consisted of various mixtures (from 0 to 100%) of water and a 
highly viscous, water-soluble, commercial lubricant, UCON 50-HB-5100 (Union 
Carbide). The Newtonian character of the UCON fluid had already been 
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FIGURE 1. Diagram of apparatus. 
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7 Properties abstracted from Perry (1963). 

TABLE 1. Measured physical properties of UCON-water solutions employed 

established in part 1. Relevant properties of the various liquid mixtures at' the 
temperatures employed in the experiments are tabulated in table 1,  p being 
the fluid density. 

Two classes of spheres were employed in the experiments: (i) precision steel 
ball bearings with true diameters ranging from 2% to Q in., having tolerances of 
the order of a few ten-thousandths of an inch ; (ii) composite polyethylene-steel 
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spheres of 1.5 and 3 in. nominal diameters, constructed by drilling incompletely- 
penetrating holes of different diameters on each side of an axis of the solid 
polyethylene sphere, and inserting a tightly fitting cylindrical steel plug with a 
T-shaped cross-section. Fine adjustments of the mean density of the composite 
sphere were made either by machining the steel plug or by inserting lead shot into 
the air gap between the base of the steel plug and the interior of the sphere. 
Departures from sphericity due to the flattened ends of the plug were negligible. 

Individual spheres were released at  the axis of the liquid-filled glass column 
after having been held in place beneath the surface by an electromagnet con- 
trolled from outside the sealed system. Release of a sphere caused the liquid 
level to fall in the larger column and rise in the smaller one until they reached 
their equilibrium heights appropriate to the pressure difference generated by 
the sphere’s steady motion. Sphere settling times ranged from about 1-8 to 50 sec. 

The principal experimental difficulty resided in accurately measuring and 
recording these minute pressure differences, which ranged from about 0.021 to 
1.5 mm of water during the investigation. The instrument utilized was a Model 
1004 A Sensitive Differential Pressure Transducer (Monroe Electronics, Middle- 
port, New York), consisting essentially of a grounded aluminium diaphragm 
under radial tension with a capacitor plate positioned on either side of the 
diaphragm, and a preamplifier. This was connected to a Model 117A Sensitive 
Differential Pressure Transducer Control and Indicator (Monroe), consisting 
of an amplifier and a 4 kc sinusoidal oscillator. The latter excited the transducer 
in a Wheatstone bridge configuration. Diaphragm displacement produced a 
bridge imbalance, giving rise to an error voltage which varied linearly with the 
pressure difference applied across the diaphragm. Seven differential pressure 
ranges were provided: 0 to 0-1,0.2,0.5,1.0, 2.0, 5.0 and 10.0 mm of water at  full 
scale. Sensitivity of the transducer was about 0.0005 mm of water (on the lowest 
scale). The transducer control provided a recorder output jack delivering a 
50 p A  signal for any full-scale diaphragm deflexion to a Model 213D 1-5 mA 
Recorder Driver (Monroe) which amplified the signal by a factor of 30. This 
amplified signal was fed into a Model A 601 C Recording DC Milliammeter 
(Esterline-Angus Instrument Go., Indianapolis, Indiana), which is a strip-chart 
recorder with a full range of - 1-5 mA to 0 to  + 1.5 mA. The recording pen had a 
response time of about 1 see for full-scale deflexion. This was the limiting factor 
with regard to instrument response time, since the diaphragm itself had a 
response time of only about 10 millisec. In  order to furnish an adequate record 
of pressure difference vs. time for different sphere-settling velocities, the strip- 
chart recorder was provided with a wide range of possible chart speeds, from 
$ in./h to 3 in./sec. 

Though an approximate calibration of the differential pressure transducer 
was furnished by the manufacturer, based upon his calibration of the 0-10 mm 
scale in conjunction with the assumed linearity of the diaphragm response, it 
was deemed advisable to recalibrate the instrument. Accurately known pressure 
differences as small as 0.07 mm of water were generated across the transducer 
by the simple technique illustrated in figure 2. Two 8-litre (approx.) glass bottles, 
initially containing air at  atmospheric pressure, and immersed in a stirred water 
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trough to maintain them at isothermal conditions, were attached by tubing to 
the pressure inlets on either side of the transducer. One of the bottles also led 
to a mercury-filled burette of either 2 ml. or 50 ml. capacity, depending upon 
which of the seven available transducer scales was being calibrated. Prior to 
applying any pressure difference the volumes of the glass bottles, connecting 
tubing, etc., on each side of the diaphragm were accurately measured, and the 
uniform pressure in each noted by means of a barometer. With the by-pass valve 
and atmospheric vent closed, a measured volume of mercury was released from 
the burette, collected in a weighing bottle, and weighed on an analytical balance 
to furnish a more accurate measurement of its volume than provided by the 
graduations on the burette. Since the mass and temperature of the air in each of 
the two closed subsystems on either side of the diaphragm remained constant, 
the increase in volume caused by removal of mercury from one of the sub- 
systems was converted into an equivalent pressure difference by application of 
the ideal gas law. An approximate method for measuring the small volume 
changes in each of the two subsystems due to diaphragm movement was 
incorporated into the calculation (Feldman 1967), though this refinement 
resulted in only a very minor correction. Due to the essentially adiabatic 
expansion of the air occurring immediately upon release of the mercury, it was 
found necessary to wait about 2.5 min for the system to return to isothermal 
conditions, as attested to by the fact that the pressure difference across the 
diaphragm no longer changed with time. 

The calibration procedure was repeated for all seven transducer scales except 
the 5 mm one. The AP calibration obtained in this manner differed from the 
manufacturer’s by about 10-20 %, which lies somewhat beyond the 5 yo 
accuracy range at full scale claimed (but not guaranteed). However, in view of 
the obvious uncertainties in the manufacturer’s calibration technique, especially 
in the lower AP range, the discrepancy was not regarded as casting any doubt 
on the validity of our procedure. Strong evidence of the high accuracy of our 
calibration was indirectly furnished by the fact that the theoretical pressure 
drop, cited in (l), was experimentally confirmed to within about 3 % in the 
Re range where it would normally be expected to be applicable. 

The calibration procedure outlined above was repeated periodically through- 
out the course of the experiments with satisfactory reproducibility. Because the 
transducer was found to be slightly humidity sensitive, it was stored in a 
desiccator until just prior to use. 

In  order to interpret the data from the sphere-dropping experiments, 
elementary manometric principles were employed to relate the pressure 
difference observed across the diaphragm to the true pressure drop incurred 
by the sphere’s motion. These quantities are not precisely equal, owing to a 
number of minor corrections emanating from various sources. However, in our 
experimental configuration, the difference between these two quantities was 
calculated to be only 2.0 %. 

A characteristic feature of both the calibration runs and experiments utilizing 
the most sensitive transducer scales was a drift in the ‘zero’ reading of the 
pressure differential across the transducer. (In the case of the experimental runs 
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see the lower lines in figures 3a, 3 b  and 3c.) This drift occurred after the 
atmospheric vent and by-pass in figure 1 were closed, but before the sphere was 
released. No drift was observed when both sides of the system were vented to 
the atmosphere. This phenomenon was previously reported in part 1, where it 
was tentatively attributed to non-uniformities in liquid density due to in- 
adequate temperature control ; however, it  is actually due to minute tempera- 
ture variations in the two air volumes transmitting the pressures to each side 
of the transducer. A simple application of the ideal gas law shows that the 
existence of a temperature difference as small as 0.001 degF between these two 
air volumes after the intercommunication is closed would create a pressure 
differential of about 0.02 mm water, which is approximately equal to the 
magnitude of the smallest pressure difference arising in the experiments.-j- 
Fortunately, however, because the drift rate remained sensibly constant during 
the brief duration of an experiment,f the same drift rate as was observed in the 
‘zero’ readings at the beginning and end of an experiment was also visibly 
discernible in the pressure drop readings themselves during the course of the 
experiment.§ Hence the pressure drop could be accurately obtained by sub- 
tracting the hypothetical ‘zero ’ reading, obtained by interpolating the ‘ before ’ 
and ‘after’ zero readings (the dotted lines in the lower portions of figures 3a-3c),  
from the corresponding pressure reading at the same instant of time. Because of 
the linearity of the drift with time, this difference was independent of time. 
Hence the drift had but a minimal effect on the accuracy of the experimental 
measurements. I1 

T Since, according to the ideal gas law, Ap/p = ATIT,  where Ap is the change in pressure p 
resulting from a change, AT,  in the absolute temperature T ,  it would seem desirable in any 
future work to investigate the use of a pressure p considerably below atmospheric (but, of 
course, above the vapour pressure of the liquid) in order to effect a proportional reduction 
in the pressure drift Ap for a given temperature drift AT. 

$ Because of its heating and cooling cycles, the re-circulated air issuing from the 
constant environment chamber (figure 1) would produce a sinusoidal rate of drift (of 
undesirably large amplitude) if left functioning during the experiments. Therefore, 
immediately prior to sphere release, the constant environment chamber and air blowers 
(used to re-circulate the temperature-controlled air) were shut down. Since the temperatures 
in the ambient atmosphere and enclosure were always very nearly the same, the tempera- 
ture within the enclosure would always respond in the same manner to this sudden change; 
moreover, this response was slow. As a consequence, the drift always occurred in the same 
direction, as illustrated in figures 3a, 3b  and 3c ,  and was practically linear over relatively 
short periods of time. Over longer times, the drift rate increased. Accordingly, spheres 
were released as quickly as possible after interruption of the air flow from the constant 
environment chamber. With this precaution, the drift rate could be made as small as 
0.001 mm of water per minute. 

3 The existence of continuous records of these quantities confirms, incidentally, the 
assumption in part 1 of equality of drift rates. 

1 1  The same was not true for the calibration runs however, even though the origin of the 
phenomenon is identical. Drift occurred after the atmospheric vent and by-pass (figure 2 )  
were closed, but before release of the mercury. The drift here could not be made to behave 
linearly, nor at a small rate. Interruption of the stirring caused linear drift (see previous 
footnote), but a t  an excessively large rate considering that it was necessary to wait 2.5 min 
after the mercury release until equilibrium conditions prevailed. This drift therefore con- 
stituted the major limitation in accurately calibrating the most sensitive transducer scales. 
The highest rate of drift observed during calibration was about 0.002mm ofwater per minute. 
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Inspection of the strip-chart AP us. t ( t  =time) record rendered it possible to 
ascertain whether the sphere’s settling time through the column had been 
sufficient to attain a steady-state pressure differential. This ‘response time ’ 
(see figures 3u-3c) varied appreciably with Re. For example, it  was found to be 
about 3 see for Re = 2.4, increasing to about 15 see at  Re = 123, and subse- 
quently decreasing to 1.3 see at Re = 5720. As a result, it  was possible to use 
the small, fast-settling,t steel spheres at  the smaller and larger Reynolds 
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Electrical signal 
to milliammeter4- - - - - - 
recorder 

Final diaphragm position 

atmosphere 

Water IJ 
trough 

l- 8 litre. air-filled bottles 1 

(exaggerated) 

2 or 50 ml. 

FIGURE 2.  Calibration procedure. 

numbers, but not in the intermediate range from about Re = 60 to 700, where 
it was necessary to resort to the larger, slower-settling, plastic-steel spheres. 
In order to obtain pressure drops which would not be excessively small, and 
therefore outside the realm of accurate measurement, the smaller settling 
velocities of the composite spheres were partially compensated for, insofar as 
increasing the drag force for a specified settling velocity, by resorting to much 
larger sphere diameters (a/R, = 0-25-0.5) than were utilized for the steel spheres 
(u/R, 6 0.1). Possible wall effects thereby incurred are discussed in $3.2. 

3. Results and conclusions 
3.1. Experimental results 

The steady-state drag force D on each steel sphere falling in a specified liquid 
was computed by subtracting the calculated buoyant force exerted on it by the 
appropriate liquid from the measured weight of the sphere (in air). This pro- 
cedure was not sufficiently accurate for the polyethylene-steel spheres ; here the 

t Faster-settling spheres experience larger drags, thereby giving rise to larger, more 
accurately measurable, pressure drops. 
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drag was directly measured by weighing the sphere in a sample of the liquid in 
which it was ultimately to be released. The results of both classes of weighings 
are recorded in table 2, along with a specification of the sphere size and liquid 
involved in each group of replicate experiments. 

Expt . 
group 

number 

I 
I1 
I11 
IV 
V 
VI 
V I I  
VIII 
IX 
X 
XI 
XI1 
XI11 
XIV 
xv 
XVI 
XVII 
XVIII 
XIX 
xx 
XXI 
XXII 
XXIII 
XXIV 

Sphere 
Fluid diameter, 

(temperature, 2 a 

"C) 
A (25.4") 
A (25.3") 
A (25.3") 
A (25.3') 
A (25.4") 
B (26.1") 
B (27.0") 
B (26.7") 
B (27.0") 
C (24.6") 
C (24.2") 
C (24.4") 
C (24.5") 
C (24.9") 
D (23.5') 
D (24.3") 
D (24.6") 
D (24.4") 
E (25.0") 
E (25.0") 
E (24.0") 
E (24.0") 
E (24.0") 
E (24.0") 

(in.) 

a 
.E. 8 2  

1 3  
8 2  
17 
3 2  
6 
8 
7 
3 2  
9 

3 2  
1 3  
5 2  

__ 

.... 

1.5 
1-5 
1.5 
1.5 
3 
1.5 
- s_. 3 2  

1 1  
:* 2 
__ 1 5  
3 2  
6 
8 

~- 

- 
3 
-3. 
18 

-9. 3 8  

3 
8 
- 

3 
B 

Sphere 
weight 
in air 

(g )  
1.045 
1.485 
4.475 

10.013 
16.326 
0.698 
1.485 
4.473 

~ 

~- 

- 

- 

- 

- 

1.484 
2.713 
6.870 

16-329 

0.439 
1.485 
3.522 

8.356 

- 

__ 

Sphere 
weight 
in fluid 

(g) 
- 

- 
- 

- 

- 
- 
- 

- 

8.662 
0.644 
1.994 
3.845 

12.445 
12.231 
- 

- 
- 

- 
1.270 
- 

- 

- 

14.851 
- 

Drag 
D 

0.904 
1.285 
3.871 
8.663 

0.603 
1.283 
3.863 
8.662 
0.644 
1.994 
3.845 

12.445 
12.231 
1.289 
2.357 
5.965 

1.270 
0.383 
1.295 
3.072 

14.851 
7.290 

(g) 

14-13 

14.18 

t 1 mm water = 100 mg/cm2. 

TABLE 2. Averaged experimental data 

True 
terminal 
settling 
velocity, 

U 
(ft./sec) 

0.214 
0.265 
0.508 
0.788 
1.03 
1-06 
1.49 
2.27 
1.00 
0.334 
0.707 
1.01 
0.675 
1.95 
3.59 
4.10 
5.12 
5.82 
0.195 
3.53 
3.85 
4.47 
0.718 
5 0 8  

Truet 
pressure 

drop, 
Al' 

(mg/cm2) 
9.57 

13.6 
41.1 
91.1 

149 
6.51 

14.3 
42.9 
97.9 

18.4 
31.7 
84.6 
77.6 

13.8 
36.1 
82.2 

6.83 

7.84 

7.29 
2.11 
6.76 

16.4 
85.5 
40.9 

Three to five replicate experiments were made of the dynamic pressure 
difference, AP, and of the terminal settling velocity U through the lof t .  
(approx.) column for each data point (i.e. same sphere, liquid, and temperature). 
The arithmetic averages of AP and U for each series of replicate experiments, 
represented by a Roman numeral in the table, are recorded in table 2.  In 
conjunction with. other data tabulated in tables 1 and 2, these averages were 
employed to compute the corresponding values of APAID ( A  = 28.6 in.2) us. 
Re = dU/v  (d = Zu), tabulated in table 3. 

The settling times of many spheres were as small as 2 sec, making it im- 
practical to use a stop watch for the determinations. Measurement of the 
settling velocity was therefore based upon the strip-chart record of AP us. t .  
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Simultaneous with sphere release, a sudden initial rise in the pressure differential 
occurred. Upon entering the small exit hole at  the inlet to the sphere recovery 
valve located at  the base of the column, the AP value underwent a second 
sudden rise (due to the reduction in cross-sectional area), before reverting to its 
zero-point reading upon coming to rest. Typical strip-chart records at  various 

Experiment 
group 

nimber alR0 Be APAID 

I 0.041 0.204 1.95 
I S  0.047 0.284 1.95 
IS1 0.067 0.76 1.96 
IV 0.088 1.55 1.94 
V 0.104 2.36 1.94 

V I  0.036 9.1 1.99 
VI1 0.047 17.2 2.05 
VIII 0.067 37.3 2.05 
IX 0.25 61.5 2.08 
X 0.25 123 1.96 

XI 0.25 258 1.70 
XI1 0.25 370 1.52 
XIII  0.50 495 1.25 
XIV 0.25 730 1.17 
XV 0.047 730 1.12 

X V I  0.057 1,050 1.08 
XVII 0.078 1,800 1.12 
XVIII 0.104 2,710 1.07 
XIX 0.50 5,060 1.06 
XX 0.031 5,720 1.02 

XXI 0-047 9,140 0.96 
XXII 0.062 14,200 0.98 
XXIII  0.50 18,100 1.06 
X X I V  0.083 21,400 1.03 

TABLE 3. Calculated experimental results 

Reynolds numbers are shown in figures 3a-3c. Reproducibility of the settling- 
time measurements in replicate experiments was generally within 1-2 yo, even 
when the time of fall was as small as 2 sec. Knowledge of the exact length of 
sphere travel through the column, the distance between the two abrupt pressure 
rises on the strip-chart, and the recorder chart speed, then yielded an average 
settling velocity. This value is somewhat less than the true terminal velocity U ,  
owing to the time required to accelerate the sphere to its ultimate terminal 
velocity from its initial rest position. Based upon the approximate dynamics of 
unsteady settling under the influence of a constant external force (Lapple & 
Shepherd 1940), the true terminal velocity was then calculated by applying an 
appropriate correction factor for each experimental condition. The corrections 
were relat'ively small, amounting to only 9 %  in the worst case. It is these 
corrected values which are reported in table 2. 
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After correcting for wall effects (McNown et al. 1948; Haberman & Sayre 
1958 ; Fidleris & Whitmore 1961), the Reynolds numberldrag coefficient rela- 
tionship implicit in the data reported in the tables was in good agreement with 
accepted values (Lapple & Shepherd 1940) for all but two data points.? 
Excluding these two points, the standard deviation of the drag coefficient from 
accepted values was about 6 yo, the maximum deviation being 13 yo. These small 
discrepancies are due primarily to uncertainties in the viscosity arising from 
small temperature gradients within the column, possible errors in measuring 
the small settling-time intervals, uncertainties in the proper settling-velocity 
corrections arising from the acceleration phase of the sphere’s motion, and 
unstable sphere motions (see 33.3) observed a t  Re > 300. Since an accurate 
knowledge of Re was not critical to the investigation, no attempts were made to 
secure more reliable measurements of this parameter. 

For Reynolds numbers less than about 700, interpretation of the AP vs. t 
strip-chart record was relatively straightforward. However, for Re > 700 the 
response of the column of liquid to the suddenly applied pressure difference was 
highly underdamped, as indicated by the oscillations in the (AP, t )  curves in 
figures 3b  and 3c .  Consequently, an absolutely steady-state AP value could not 
be obtained during the few seconds of settling time available. However, except 
for the existence of sudden ‘dips’ (figure 3 b ) ,  whose significance is discussed in 
0 3.3, and taking into account the drift, the AP value oscillated about an obvious 
mean value. This made it possible to secure a hypothetical steady-state AP 
value by drawing a smooth curve through the centres of the sinuous (AP,  t )  
curves. These correspond to the dashed curves in the upper portions of figures 3 b 
and 3c ,  which are seen to lie parallel to the interpolated zero-point curves. 

The reproducibility of replicate AP measurements was surprisingly good, 
especially for Re < 300, corresponding to stable settling (see 93 .3 ) ,  where 
standard deviations were less than 1 yo of the average value. But, even at higher 
Reynolds numbers, where settling was unstable, the largest standard deviation 
encountered in replicate experiments was only 2.2 yo of the average. Because 
of the considerable accuracy of the measurements of D and A ,  this same degree 
of reproducibility is equally applicable to the dimensionless grouping APAID 
in table 3. On the other hand, due primarily to uncertainties in calibration, the 
accuracy of the APA/D measurements is only estimated to be between 3 and 
8yo, the more accurate figure cited being applicable to the lower Reynolds 
number data, where settling was stable and response of the column liquid was 
overdamped. 

A plot of APAID us. Re, based on the tabulation in table 3,  is presented in 
figure 4. It will be seen that APAID = 2.0 for Re < 125, and that APAiD = 1.0 
for Re > 6000, though the latter Reynolds number is subject to large un- 
certainty. In the intermediate range, 125 < Re < 6000, the pressure drop 
foreeldrag ratio undergoes an apparently rapid transition between these two 
extreme limits. 

t Unstable sphere motion in conjunction with retardation of settling due to repeated 
collisions with the cylinder walls is probably responsible for the large discrepancies (about 
40%) observed in the case of the two runs at  Re = 5060 and 18,100 with 3 in. spheres. 
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Re 
FIGURE 4. Pressure drop force/drag ratio vs. particle Reynolds number. 

3.2. Wall effects 

The various sphere sizes employed in the experiments encompassed the range 
of sphere-cylinder radius ratios from afR, = 0.03 to 0.5, though two-thirds of 
the total number of experiments conducted lay in the range alR, < 0.10. For a 
sphere falling along the axis of a circular cylinder in the Stokes regime, the 
effect of the wall upon the APAID ratio is (Brenner 1966)t 

APA/D = 2[ 1 - $(u/R,J2] + O(U/R, )~ ,  (2) 
where D refers to the drag on the sphere, including wall effects. For values of 
a/R, < 0.10, the wall correction is less than 0.7 yo, and therefore negligible, at 
least in the Stokes regime. It is well known that the effect of a cylindrical 
boundary upon the drug experienced by a spherical particle moving along its 
axis decreases rapidly with increasing Re for a fixed alR, (McNown et al. 1948; 
Fidleris & Whitmore 1961). The present experiments indicated that APA/D 
behaves in a similar manner. For example, at Re = 730, table 3 shows that the 
APAID values at  n/R, = 0-047 and 0.25 differ by less than 5%,  which lies 
within the limits of accuracy of the data. Similar implications arise by com- 
paring the data points for the significantly different sphere sizes in the Reynolds 
number ranges 5060 to 5720 and 18,100 to 21,400.g 

t The comparable result for a non-axially situated sphere is (Brenner 1966) 

APA/D = 2 ~ 1 -  ( b / ~ , ) 2 - - ( ~ / ~ , ) 2 1 + 0 ( ~ / f ~ , ) 3 ,  

where b is the distance of the sphere centre from the cylinder axis. 
$m In addition to these data, further (preliminary) experiments conducted with a 1 in. 

diameter composite sphere at  R e  % 60 yielded the same APA/D value, to within the 
experimental uncertainty, as noted in table 3 for the 1.5 in. sphere at R e  = 61.5. 
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It seems consistent to conclude therefore that conventional wall effects were 
negligible in all experiments reported here, even for those in which a/R, was as 
large as 0.5. 

3.3. Unstable sphere movement 

At Re < 300 the spheres settled stably, their motion being purely vertical, 
along the cylinder axis. However, for Re > 300 the spheres were observed to 
‘wobble’ (i.e. an imaginary axis fixed in the sphere would rock to-and-fro), and 
‘wander’ (i.e. the sphere centre moved off the cylinder axis, occasionally 
meandering so far as to strike the wall). In  most cases of instability the sphere 
centre performed a sinuous wandering about a mean position at the cylinder 
axis. However, in a few cases the wandering motion was of such an extreme 
nature that the sphere, upon approaching the wall, remained permanently in its 
proximity as it settled, rather than returning to the cylinder axis. In  general, 
for the same Re, the denser spheres displayed less wandering. These unstable 
motions are caused by an increasing instability of the fixed-ring vortex in the 
wake of the sphere with increasing Reynolds number.? 

Proper interpretation of the pressure drop data in the presence of wandering 
requires further discussion. In  the general case, a momentum balance taking 
account of all external forces exerted on the fluid within the column yields 
(Brenner 1962) 

where F,, is the net shearing force exerted by the vertical cylinder walls on the 
liquid. Now, in both the Stokes and Oseen regimes, the wall force due to the 
motion of a small, non-axially situated particle within a circular cylinder is 
(Brenner 1962) 

correctly to terms of O(a/Ro)2, where b is the distance of the particle centre from 
the cylinder axis. Substitution into (3) yields 

A P A / D  = 1 + (Pw/D), (3) 

F,/D = 1 - 2(b/R,J2 (4) 

APAID = 2[1- (b/R0)’], ( 5 )  

which shows that the pressure drop varies with the eccentric location, blR,, of 
the sphere centre within the cylinder, a t  least at  small Re. 

For Re > 6000 the strip-chart record of A P  ‘us. t (see figure 3c) revealed no 
apparent changes in pressure drop as the sphere wandered about to different 
eccentric locations. Thus, in this Reynolds number range, AP is essentially 
independent of eccentricity. Since D, being the net weight of the sphere, is 
necessarily independent of eccentricity, (3) indicates that F, is also independent 
of blR,. In fact, since figure 4 indicates that A P A / D  = 1.0 in this Re range, it 
follows that Fw = 0 at all eccentric positions. This inference is consistent with 
all of the experimental data obtained at the higher Reynolds numbers. 

t According to Taneda (1956) a closed re-circulating wake, that is, a standing eddy, first 
makes its appearance at Re % 10. At Re w 130 the flow starts to become unsteady, with 
oscillations of the downstream part of the wake. Above Re % 200, the flow becomes 
irregular, with separation of the fixed-ring vortices from the rear of the sphere, followed by 
the subsequent formation of new ones. More complete details are critically summarized by 
Torobin & Gauvin (1959). 
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In  the region 300 < Re < 6000 the APAiD ratio was found to be greater 
than 1.0 but less than 2.0. In  accordance with (3) this indicates that Fw is not 
zero. Moreover, by analogy to (4), F, probably depends upon b/R,, though 
perhaps much more weakly than is true of (4)) which applies only at  small 
Reynolds numbers. Consequently, ( 3 )  requires that APA/D vary with eccentri- 
city too. This dependence upon b/R, seems to be confirmed by records of 
AP vs. t (see figure 3b) ,  where sudden ‘dips’ in the AP value probably corre- 
spond to off-axis sphere wandering.? In  such cases the maximum steady-state 
AP reading was assumed to correspond to the value appropriate to axial motion. 
This interpretation is consistent with the fact that no ‘ dips ’ were observed for 
Re > 6000 (despite the off-axis wandering), in which region the pressure drop 
is presumably independent of eccentricity. 

Despite the bizarre and complex appearance of many of the strip-chart 
records obtained a t  the higher Reynolds numbers, occasioned by such factors 
as the initial and final unsteadiness of the system response, the drift, the 
wobbling, the wandering, and the underdamped nature of the system response, 
the individual AP vs. t records for replicate experiments were so impressively 
alike-even in finest details-as to be superposable, one on the other. They 
were as characterististic of a given system as an infra-red spectral record is of a 
specified compound. 

4. Discussion 
The principal results of the present series of experiments are contained in 

figure 4 .  It appears, inter alia, that the pressure drop force/drag ratio for a 
spherical particle settling along the axis of a circular tube is accurately given by 
APAID = 2.0, in accordance with theory (Brenner 1962), for particle Reynolds 
numbers less than about 125. More precisely, the ten data points comprising 
the region 0.20 < Re < 123 furnish an average value of APA/D = 1.99 with a 
standard deviation of about 2.5 yo from the average. This corroborates and 
extends the conclusions of part 1. In  particular, the present experiments show 
that the theory governing (1) is valid for Reynolds numbers substantially 
greater than Re z 2, the value commonly accepted as the upper limit of 
validity of the Stokes and Oseen drag laws for a sphere (Maxworthy 1965). 

In  view of the underlying theoretical analysis, such agreement carries with 
it the implication that ( 5 ) )  which applies more generally to an off-centre sphere, 
would also be valid in essentially the same Reynolds number range, provided 
that conventional wall effects were absent, and that such asymmetric motions 
were stable.$ Similar implications exist for cylindrical boundaries of non-circular 

t In instances where the time of fall of the sphere was sufficiently long to allow leisurely 
observation, it was possible to correlate these ‘dips’ visually with off-axis motion. 

$ The experiments of Karnis, Goldsmith & Mason (1966) show that, when inertial effects 
are sensible, a sphere released near the tube wall in a quiescent fluid migrates permanently 
to  the tube axis due to the action of an inertial lift force associated with the asymmetry of 
the flow field (Brenner 1966; Cox & Brenner 1968). Clearly, this is due to a conventional 
wall effect, and will therefore vanish in the limit as a/R, + 0, keeping b/R, fixed. Hence 
the extent of radial migration in a tube of given length can be made as small as desired by 
choosing a/ R, sufficiently small, a t  least in principle. 
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cross-section. For the general case of a conduit of arbitrary cross-section, 
theory (Brenner 1962) predicts that 

APAID = vO/Vm, (6) 

where A is the cross-sectional area of the cylinder, and uo is the approach velocity 
to the particle when fluid flows in laminar flow through the duct at mean 
velocity V,.t Thus, for example, in place of (l), we have that APA/D = 2.093.. . 
for a particle located at  the axis of a square duct; similarly, APA/D = 2219 for 
a particle at  the axis of a duct of equilateral triangular cross-section. Equation 
(6) does not require that the particle be spherical; rather, it applies to particles 
of any shape, provided that, if any lateral forces act upon the particle, D refers 
only to that component of the vector force which lies parallel to the cylinder 
walls. 

Referring to figure 4, it appears that the apparent constancy of the APAID 
ratio for Re < 125 may not merely be an asymptotic result, valid only as 
Re + 0, in the sense, say, that Stokes law is an asymptotic result; rather, it is 
possible that the limiting value of Re M 125 may correspond to a true transition 
point. In  this connexion it is of interest to note that Re M 130 is the point at 
which the flow pattern behind the sphere first becomes unsteady (Taneda 1956; 
Torobin & Gauvin 1959). 

Since the theory (Brenner 1962) is strictly applicable only for small ratios of 
particle to duct size, the transition point in a plot of APA/D us. Re for particles 
and ducts of any shapes ought only to depend upon the geometric shape (and 
orientation) of the particle, but not upon the configuration of the cylinder. If 
this is indeed true it follows that the transition point for a spherical particle 
would always be Re M 125, irrespective of the cross-sectional shape of the 
cylindrical duct in which it fell. 

In  contrast to the possibly sharp transition occurring at  the Reynolds number 
where a steady flow pattern ceases to be stable, the other limiting result, 
APAID = 1.0, observed at Re > 6000, is almost certainly an asymptotic result, 
strictly valid only in the limit where Re --f co. Since the cylinder walls experience 
no net force for this case, and since they lie a t  an effectively infinite distance 
from the particle, it seems improbable that an extension of the experiments to 
Reynolds numbers substantially above those investigated here would reveal 
any further APA/D ‘transitions ’. 

The simple, idealized model of a point force of strength D directed along the 
axis of a circular tube of radius R, furnishes insight into the remarkable nature 
of the phenomenon with which we are dealing in these experiments.$ Elementary 
dimensional arguments show that the force on the wall is necessarily of the 
functional form Fw/D = function (D/pv2), (7 )  

t For example, for Poiseuille flow in a circular tube, 

$ I n  this connexion it is of interest to note that an exact solution of the complete 
Navier-Stokes equations is available (Landau & Lifshitz 1959) for a point force in an 
unbounded fluid. 

v0pm = 2[1- (b/R,)Z]. 
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where D / p 2  plays the role of a generalized Reynolds number. The pressure drop 
is not an independent parameter since it is related to Fw and D via (3). What is 
paradoxical about (7) is that the force on the wall is independent of the tube 
radius, despite the significant influence of tube radius on the far-field velocity 
distribution, which in turn governs the magnitude of this wall force. 
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